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We use a set of equations, sometimes referred to as the ‘&-equations’, to approximate 
the two-dimensional inviscid motion of an initially circular vortex sheet released 
from rest in a cross-flow. We present numerical solutions of these equations for the 
case with S2 = 0 (for which the equations are exact) and for S2 > 0. For small values 
of the smoothing parameter 6 a spectral filter must be used to eliminate spurious 
instabilities due to round-off error. Two singularities appear simultaneously in the 
vortex sheet when S2 = 0 at a critical time t , .  After t ,  the solutions do not converge 
as the computational mesh is refined. With S2 > 0, converged solutions were found 
for all values of S2 when t < t,, and for all but the two smallest values of S2 used when 
t > t , .  Our results show that when S2 > 0 the vortex sheet deforms into two doubly 
branched spirals some time after t,. The limiting solution as S-tO clearly exists and 
equals the S = 0 solution when t < t,. For t > t,, the limiting solution appears to exist 
if only the converged solutions are used, but it is unclear what relation this limiting 
solution has to any S2 = 0 solution for these times. 

1. Introduction 
The numerical solution of the equations describing the solution of a two- 

dimensional vortex sheet embedded in an ideal fluid has proved to be a very 
challenging problem. Most numerical methods appear to produce reasonable results 
when modest values of the parameters describing the computational mesh are used, 
but produce irregular or inconsistent results as the computational mesh is refined; 
that is, the discretizations of the equations describing vortex sheet motion apparently 
fail to converge. Recently, Krasny ( 1 9 8 6 ~ )  has summarized the previous numerical 
attempts at solving these equations and has concluded that they have failed for two 
fundamental reasons. 

The first reason is that round-off error introduces spurious perturbations into the 
calculations that, due to the intrinsic susceptibility of vortex sheets to Helmholtz 
instability, grow rapidly to destroy the accuracy of the calculations. Krasny ( 1 9 8 6 ~ )  
has shown that these spurious instabilities can be suppressed either by increasing the 
arithmetic precision as the computational mesh is refined or, more practically, by 
applying a spectral filter at each time step to eliminate wavenumbers whose Fourier 
coefficients’ amplitudes are less than the round-off error. Using these techniques, 
Krasny (1986a) produced convincing results that for times less than a finite critical 
time t ,  the point-vortex method for computing the rollup of a periodically perturbed 
flat vortex sheet converged as the number of vortices used to describe the sheet was 
increased. 

The second reason is that apparently the exact solution develops a singularity at  
some point on the vortex sheet at  t,. The asymptotic analysis of Moore (1979) and 
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the numerical evidence produced by Meiron, Baker & Orszag (1982), Krasny ( 1 9 8 6 ~ )  
and Rottman, Simpson & Stansby (1987) suggest that the vortex sheet becomes non- 
analytic a t  t,. In  general, the vortex sheet’s curvature becomes infinite a t  some point 
where the vorticity distribution has formed a cusp, although the sheet remains 
continuous. Presumably, numerical methods fail to converge after the critical time 
because their differencing schemes become inconsistent when the solution becomes 
non-analytic. 

The appearance of a singularity a t  a finite critical time raises several intriguing 
questions. Does a solution exist for t > t, and if so is it unique and how can it be 
computed ? In  an attempt to gain some insight into these questions, Krasny (1986b, 
1987) applied a refinement of a method originally proposed by Anderson (1985) to 
compute the rollup of a vortex sheet before and after t,. Krasny replaced the exact 
equations governing vortex-sheet motion with desingularized approximate equations 
that he refers to as the ‘&equations ’, which reduce to the exact equations in the limit 
as the smoothing parameter S vanishes. When discretized by approximating the 
vortex sheet by a finite number of points, these approximate equations become the 
‘vortex blob’ method introduced by Chorin & Bernard (1973) and in the limit as 
S+ 0 this method reduces to the point-vortex method first used by Rosenhead (1931). 
These desingularized equations have better behaved solutions than the exact 
equations and therefore are more tractable for numerical calculation. Anderson 
proposed that some insight into the nature of the solutions of the exact equations 
may be obtained by studying the limit of the solutions of the approximate equations 
as S - t O .  

Although the solutions of the S-equations are better behaved than those of the 
exact equations, the approximate solutions for small S are susceptible (although less 
severely) to  spurious instabilities due to round-off error. Krasny’s refinement of 
Anderson’s method is to incorporate spectral filtering to  eliminate these spurious 
instabilities. He applied this technique to the rollup of a periodically perturbed 
vortex sheet (Krasny 1986b)) and to the rollup of vortex sheet behind an aircraft 
wing (Krasny 1987). In  both cases he produced numerical results that  suggest the 
limit of the converged approximate solutions exists as S+ 0 for times both before and 
after t,, even though the solutions of the exact equations converge only for times 
before t,. The limiting approximate solution indicates that the vortex sheet deforms 
into a spiral with an infinite number of turns centred at the point where a singularity 
forms in the exact solution a t  t,, although it is not clear in what sense this limiting 
solution is a solution of the exact equations. 

Krasny has emphasized that his work on the convergence of vortex-sheet methods 
is primarily of an experimental nature. The rigorous mathematical foundation for 
this problem, although developing rapidly in the last few years, is still incomplete. 
The existence of solutions of the exact equations for vortex sheets with analytic 
initial conditions has been proved for short times by Sulem et al. (1981), and for times 
up to nearly the time of singularity formation by Caflisch & Orellana (1986). For 
certain kinds of non-analytic initial conditions, Ebin (1988) and Caflisch & Orellana 
(1989) have proved that the vortex-sheet problem is ill-posed. Although Caflisch & 
Lowengrub (1989) have proved the convergence of the point-vortex and vortex-blob 
methods for small analytic perturbations of a planar vortex sheet, their proof is 
restricted to small times and certainly does not extend to  the time a t  which vortex- 
sheet rollup begins. 

Recently, Tryggvason, Dahm & Sbeih (1991) have compared solutions of the 6- 
equations with numerical solutions of the fully viscous Navier-Stokes equations for 
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the rollup of initially planar thin vortex layers at  high Reynolds numbers. They 
found that the solutions of the &equations accurately reproduce only the large-scale 
features of rollup for vorticity layers of finite initial thickness. However, their 
results indicate that the limits of the solutions as 6 goes to zero for the inviscid 
problem and as the initial thickness of the vortex layer approaches zero for the 
viscous problem at high Reynolds number are the same. 

In  the present paper we describe an attempt to use Krasny’s method to study the 
rollup of a vortex sheet that represents the boundary of cylinder of a fluid released 
from rest in a steady cross-flow. This problem has been studied earlier by Rottman 
et al. (1987) using a vortex-sheet method. They estimated the critical time, computed 
bhe rollup of the vortex sheet with 8 = 0 . 1 ~ ~  (where ro is the initial radius of the circle) 
and estimated the large-time steady-state flow. However, they did not study the 
detailed structure of the singularity that forms a t  the critical time nor the behaviour 
of the vortex rollup in the limit as &+ 0. We present here a detailed numerical study 
of the structure of the singularity that forms when S2 = 0 and of the vortex rollup 
when a2 > 0. We also discuss some difficulties we encountered in attempting to obtain 
the limit of the solution as 8-0 when t > t,. 

2. Problem formulation 
The initial-value problem under consideration is sketched in figure 1. We consider 

the two-dimensional motion of a vortex sheet with initially circular cross-section of 
radius ro embedded in an unbounded ideal fluid. The initial conditions are that of 
potential flow outside the vortex sheet with uniform speed U, at infinity and that of 
a state of rest inside the vortex sheet. 

Following Anderson (1985) and Krasny (1986b), we will use the following 
approximate form (sometimes referred to as the &equations) of the equations 
governing the motion of the vortex sheet : 

where z ( [ ,  t )  = x(E, t )  +iy(g, t )  is the complex coordinate (all other quantities are real) 
for a point on the vortex sheet specified by the Lagrangian parameter and the time 
t. We have used the notation z’ = x(c, t )  and x* = x-iy. The vortex-sheet strength 
per unit 6 is denoted as y ( [ ) ,  and in this formulation y is independent of time. What 
makes these equations approximate is the presence of the smoothing parameter 6, 
which has the dimension of length. The exact equations for the motion of a closed 
vortex sheet are recovered by setting 6 = 0 and interpreting the integral in (2.1) as 
its Cauchy principal value. 

We define E to be the initial angular position of a point on the vortex sheet. Then 
the initial condition for z is 

z(E,  0) = ro exp (it-), (2.2) 

and we specify y(EJ = -2Uorosin(lJ. (2.3) 

This last condition produces the exact initial motion only when 6’ = 0, since (2.1) 
is an approximate expression for the vortex sheet motion when 62 > 0. 

To solve numerically the problem formulated by (2.1)-(2.3) with 6’ > 0, we divided 
the vortex sheet into N points with coordinates (xj, y,) a t  equally spaced values of 
the Lagrangian parameter = (j-i) 2x/N, where j = 1 , 2 , .  . . ,N .  Then, with the 
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FIGURE 1. A definition sketch of the flow. The dashed line represents the initial shape of the 
vortex sheet and the solid line is the vortex sheet at some later time. 

integrals in (2.1) approximated by the trapezoidal rule, we obtain the following 
set of 2N ordinary differential equations : 

where 4 = r(&) 27c/N. These are the 'vortex blob ' equations originally introduced by 
Chorin & Bernard (1973). Since z is a periodic function of E ,  this discretization of (2.1) 
has a spatial truncation error that decreases exponentially with increasing N ,  
provided d2 > 0 and z ( 6 ,  t )  remains analytic. 

To advance the calculation in time, we used a standard fourth-order Runge-Kutta 
scheme with a fixed time step At. Tests showed that this scheme had the expected 
temporal truncation error that behaved as (At)*. As a check on the accuracy of the 
time integration scheme, the value of the Hamiltonian function 

was monitored. This function is an invariant of the spatially discrete equation (2.4) 
with d2 2 0. In  all the calculations described in this paper using equations (2.4), the 
time step At was chosen small enough so that H was conserved to within a specified 
accuracy. 

and the discretization (2.4) 
is no longer exponentially accurate. Equations (2.4) with S2 = 0 are equivalent to 
Rosenhead's ( 1931) original point-vortex approximation. A more accurate dis- 
cretization is the following, which we refer to as the vortex-sheet method: 

When cY2 = 0, the integrand in (2.1) is singular at 5' = 

The last two terms in (2.6) are the contributions to the integral in (2.1) of the singular 
integrand near 5' = 5. These correction terms were first introduced into vortex-sheet 
theory by van de Vooren (1980) for an infinitely long vortex sheet and were shown 
to apply also to closed vortex sheets by Moore (1981). If the derivatives in the 
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correction terms are evaluated using a spectral method, then the spatial truncation 
error of this discretization decreases exponentially with increasing N (again, provided 
that z(6 ,  t )  remain analytic). 

The point-vortex method is equivalent to using (2.6) with van de Vooren’s 
correction terms neglected. As shown by Moore (1981), this means that the point 
vortex method has a spatial truncation error that decreases as 1/N, which is 
substantially slower convergence than that of the vortex-sheet method. Conse- 
quently, in the limit as b+O in (2.4) a much larger number of points must be used 
to achieve the same spatial accuracy as would be obtained by the use of (2.6). 

We found that for small values of 6 the calculations using (2.4) developed an 
instability which became more severe as N was increased. The same instability 
occurred when we used (2.6). We removed this instability by filtering the solution to 
eliminate spurious perturbations introduced by round-off errors. The filter is 
analogous to that suggested by Krasny (1986a, b)  in which after each time step the 
z j  are fast Fourier transformed and all the Fourier coefficients with magnitudes less 
than some small value E were set to zero before synthesis. Krasny recommended 
setting e equal to the machine arithmetic precision and we found that this was 
generally adequate. The use of this filter prevents the occurrence of spurious 
instabilities, but it also introduces a systematic error that depends on the value of E 

and the size of the time step. Pugh (1989) noted that for very small time steps the 
filter prevents any growth of the solution, because the time step is too small for the 
‘true’ solution to  increase even as much as e. So far, there has been no rigorous 
analysis of the error introduced by the filtering technique, so the choice of e and the 
time step that suppresses the spurious instabilities and introduce the minimum error 
have to be found by trial and error. 

In  the remaining sections of this paper we make all variables non-dimensional with 
ro as the lengthscale and ro/Uo as the timescale. 

3. Numerical results with S2 = 0 
Here we summarize the results for the problem formulated in the previous section 

with S2 = 0. This problem was considered previously by Rottman et al. (1987) using 
a slightly different vortex-sheet formulation than described in the previous section. 
They found that the calculation developed a sawtooth instability a t  some critical 
time t,. This critical time was estimated to be t, 0.55 in the limit N-t  co, where N 
is the number of points describing the vortex sheet. At the critical time the vortex 
sheet was smooth and only slightly distorted from its initially circular shape, but a 
closer look a t  the results revealed that the curvature had become infinite and the 
vorticity strength per unit arclength had formed a cusp at two points on the sheet. 
These two points were located symmetrically about the x-axis on the downstream 
side of the vortex sheet. 

We have recomputed this problem using the vortex-sheet method outlined in the 
previous section. The main differences between the present method and that used by 
Rottman et al. (1987) are the time integration scheme and the markers used to follow 
the motion of the vortex sheet. As explained earlier, we use a fourth-order 
RungeKutta  scheme with a fixed time step whereas Rottman et al. used a variable- 
time-step Adams-Bashforth scheme with a fixed error tolerance. To describe the 
motion of the vortex sheet, we follow markers that travel along the sheet with a 
speed that is the average of the fluid speed on either side of the sheet, whereas 
Rottman et al. followed markers that travel with the speed of the fluid just inside the 
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sheet. The important distinction between these two approaches is that the vorticity 
strength of the markers is independent of time in the present formulation and time 
dependent in the other (and therefore an additional equation must be solved to 
determine this time dependence). 

The results of our present attempt to determine the critical time are summarized 
in table 1. Calculations were performed for six values ofN = 2m, m = 4,5, . . . ,9,  using 
double-precision arithmetic on a Silicon Graphics Iris 4D/340VGX workstation 
(about 16 decimal digits) with 6 = We monitored two measures 
of the critical time : the first, tf" (also used by Rottman et aZ.), is the time when all the 
Fourier amplitudes of z first become greater than E (and therefore the filter is no 
longer effective) and the second, tff" (also used by Krasny 1986a), is the time at  which 
a minimum separation between any pair of points is attained. As shown in table 
1 ,  tf" increases and t: decreases as N increases. Assuming that both these times have 
the behaviour a,+nlN-' for large N ,  we extrapolated them to N = co using a least- 
squares fit to the values for N =  128, 256 and 512. These extrapolated results 
are shown on the last line of table 1. Apparently t r  = 0.60 and t," = 0.59. It 
can be argued that tf" should occur just after t ,  as Pugh (1989) noted, so we choose 
t ,  = t? = 0.59 as our estimate of the critical time. Also shown in table 1 is the value 
of SZin and its value extrapolated to N = CO. This extrapolated value should be zero 
and the non-zero value shown in the table is an indication of the error involved 
in these extrapolations. 

In table 2 we list the radius of curvature R and the Lagrangian parameter tC 
(where 6 = kf;, are the locations on the sheet) for the points where R is a minimum 
Rmin a t  the critical time t ,  = 0.59, for the six values of N. The magnitude of R 
decreases as N increases implying that the curvature is infinite at  t,. Interestingly the 
curvature changes sign for R = Rmin with N = 128 and 256. Another estimate oft, is 
to determine the time when the curvature first changes sign. We have done this and 
using the same procedure as before we extrapolated to N = 00 and obtained the same 
result t ,  = 0.59. The value of 5, apparently oscillates as a function of N about the 
value of f;, M 0.80 ( M $c). 

Also listed in table 2 are the position X on the x-axis of the vortex sheet's centroid 
and the fractional increase of the arclength S' = (8 - 27c)/2n, where S is the arclength 
of the sheet computed by summing the distances between consecutive pairs of points, 
at t = 0.59 for the six values of N. Note that the centroid position converges very 
rapidly and that arclength appears to converge to a finite value at the critical time. 

The estimate of the critical time t ,  % 0.59 obtained here is different from t ,  M 0.55 
obtained by Rottman et al. (1987). The difference is most likely attributable to the 
errors associated with the filtering procedure in combination with a different time 
integration scheme. In  particular, the variable step length method used by Rottman 
et al. makes the error associated with the filtering difficult to assess. Probably, the 
variable step method took larger time steps, so the filter was applied less often 
allowing spurious errors to grow more rapidly than in the present case. On the other 
hand, we may be applying the filter too often so that the time growth of the high- 
wavenumber components is suppressed. 

Now that we have an estimate of the critical time using the Runge-Kutta 
integration scheme, we wish to explore more carefully the nature of the singularity 
that forms at t = t, a t  the points 6 = 6,. We follow the methods introduced by 
Sulem, Sulem & Frisch (1983) in which the singularity in the vortex sheet is assumed 
to occur when a branch point in the complex plane, which has a position that is a 
function of time, reaches the real axis. Specifically, consider a complex function 

and At = 
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N tr" t: 

16 0.037 0.714 
32 0.208 0.662 
64 0.380 0.626 

128 0.491 0.607 
256 0.548 0.597 
512 0.574 0.595 

co 0.60 0.50 

~~ 

A%" 

0.1600 
0.0597 
0.0262 
0.0124 
0.0061 
0.0037 

0.001 

TABLE 1.  Estimation of the critical time as a function of N :  ty is the time when the Fourier filter 
is no longer effective with a threshold of t f  is the time of minimum separation of any adjacent 
pair of vortices, and A":h is the minimum separation of any adjacent pair of vortices. The values 
corresponding to N = co were obtained by linear extrapolation for the three largest values of N .  

N t c  RInm r , m x  X 1 / A s ,  
16 0.982 0.332 2.712 0.03769 26.45 
32 0.884 0.275 2.797 0.03771 26.54 
64 0.834 0.210 2.893 0.03771 26.52 

128 0.761 0.117 3.024 0.03771 26.50 
256 0.773 0.037 3.273 0.03771 26.48 
512 0.804 0.015 3.951 0.03771 26.38 

TABLE 2. Properties of the vortex sheet aR a function of N a t  t = 0.59. f is the Lagrangian position 
of the maximum of the absolute value of the curvature, R,,, is the inverse of the absolute value 
of the curvature a t  !&, r,,, is the value of T a t  lc, X is the centroid position and S' is the fractional 
increase of the arclength of the sheet. 

z (6 ,  t )  = ~ ( 6 ,  t )  +iy(& t )  that  at any specified time is a function of the real variable 6. 
To match the periodic and symmetry properties of the vortex sheet of interest here, 
we require z (& t )  to  satisfy the constraint 

z*(E+n2n, t )=z(-E+n2n, t )  for n = 0 , 1 , 2  , . . . ,  and --7c<[<n. (3.1) 

We assume that z ( 6 ,  t )  can be continued onto the complex plane 5 = [+iy and 
furthermore that x has branch points at  c+n = co f n2n in the neighbourhood of which 
z behaves as 

= c(l-C+n)'> (3.2) 

where in general C a n d p  are complex. It follows from (3.1) that another set of branch 
points must exist a t  <-% = - c$ f n27c where z behaves as 

z = C* {-J'*, (3.3) 

in which a superscript asterisk denotes a complex conjugate. All C,  ,u and co are 
functions of time. The idea is that, as time increases, the branch points trace a path 
in the complex plane that reaches the real axis ( T ~  = 0) a t  t = t,, and C(t,) and 
especially ,u(t,) describe the nature of the singularity that appears spontaneously a t  
two points on the vortex sheet at t,. 

We can obtain estimates of C,  p and co by computing the Fourier coefficients of z. 
Since z(E, t )  is periodic with period 2x, it can be represented as a Fourier series 

~ ( 6 ,  t )  = C &(t)  exp (-ik() 
k=-m 

(3.4) 
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FIGURE 2. Plots of the magnitudes of the Fourier coefficients Ix",l for the vortex sheet position as 
a function of the positive wavenumber k at t = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.585: (a) lnI&,I versus k, 
and (b)  lnlirl versus lnlkl. The E ,  were computed from the calculations withN = 512. The straight 
line in (a) has slope -2.5. 

where the Fourier coefficients are given by 

Using an asymptotic analysis analogous to that outlined by Carrier, Krook & 
Pearson (1966, p. 255) ,  we can show that 

d, - A[kl-Re@)-l e-Qo sin [kEo - Im (p) In Ikl+ $1 (3-6) 
for large lkl, in which A and q5 are real and Re (p )  and Im (p )  denote the real and 
imaginary parts, respectively, of ,u. The contributions to ik are due entirely to  the 
two branch points at  5 = f and 6 = - [t, through the use of Cauchy's theorem and 
Jordan's Lemma, and the large-lkl asymptotic behaviour is obtained using Laplace's 
method. Note that yo( t )  is positive when k is positive and negative when k is negative 
and that A ,  p,  6, and q5 can be different for negative and positive k .  
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2 < k < 240 6 < k < 2 4 0  

t T O  Re (I4 T O  Re (a) 
0.300 0.736 2.348 0.523 5.162 
0.350 0.599 2.207 0.481 4.019 
0.400 0.458 2.181 0.399 3.335 
0.450 0.322 2.156 0.300 2.725 
0.500 0.207 1.997 0.209 2.030 
0.550 0.090 1.773 0.096 1.544 
0.585 -0.001 1.596 0.003 1.313 

TABLE 3. Linear least-squares estimates of To( t )  and Re[p(t)] for 0.300 G t < 0.585 based on the 
N = 512 calculation shown in figure 2 for two ranges of wavenumbers (excluding all < B )  

From (3.6) we see that when t < t ,  the Fourier coefficients decay exponentially 
with k ,  which means z( f j , t )  is analytic. But at  t = t,, when yo = 0, the Fourier 
coefficients decay algebraically with k and the decay rate Re (p) + 1 describes the 
nature of the irregularity of z(6 ,  t,) at [ = to. We can obtain qualitative estimates of 
p ( t )  and r],(t) by computing &(t) using fast Fourier transforms with -lfl< k < 
and comparing the computed In IS,I with the expression (from 3.6) 

lnlz”,l - lnIAl-[Re(p)+l]InI~l-~,lkl+lnlsin[k~o-Im(,u)lnIE(+~](. (3.7) 

versus positive k for 0.100 < t < 0.585 for the case 
with N = 512. The oscillatory character of these curves is due to the last term in (3.7). 
Sulem et al. (1983) remarked that if several singularities are relevant asymptotically 
for large IkJ then lZA,l may exhibit an oscillatory behaviour. Ignoring the superimposed 
oscillation for now, the curves clearly have a linear behaviour for large lkl for all t 
except t = 0.585. This behaviour indicates that the exponential term in (3.6) is 
dominant for these early times. At t = 0.585 the curve has a logarithmic character. 
This logarithmic character can be seen more clearly in figure 2 (b )  in which In l.&l 
versus Inlk( is plotted so that a logarithmic curve appears as a straight line. Thus, 
near the critical time, 7, is small and the spectrum is dominated by the algebraic term 
in (3.6). The slope of this straight line gives an estimate of Re b ( t , )  + 11. Moore (1979) 
using an approximate analytical theory found that Re b ( t , )  + I] = 2.5 for the 
singularity that forms on an initially flat vortex sheet and Pugh (1989) estimated 
that this is also true for a buoyant circular vortex sheet. We have plotted a straight 
line with slope -2.5 in figure 2 ( b ) ;  it compares well at least in a qualitative sense 
with the algebraic decay of the computed Fourier coefficients at  t = 0.585. 

In summary, figures 2 (a)  and 2 (a) show that yo( t )  decreases monotonically to near 
zero as t - z t ,  and at  least qualitatively Re[l&)+ 11 M 2.5. To obtain more 
quantitative estimates of y ( t )  and yo( t )  we used a least-squares method to fit the first 
three terms in (3.7) to the curves plotted in figure 2. The results for y o ( t )  and Re [,u(t)] 
are listed in table 3 for two ranges of wavenumbers: 2 < Ic d 240 and 6 < k d 240 
(excluding all 14,1 < E ) .  The estimates of yo(t)  are fairly consistent for the two ranges 
of wavenumbers and show that yo(t)  does indeed decrease monotonically with 
increasing t ,  as expected. We have plotted these values of yo(t)  versus t in figure 3 and 
it is clear that yo( t )  decreases linearly with increasing t .  The estimates for Re (p) are 
not as consistent, but for t w t ,  seem to stay in the range 1.3 < Re (p)  < 1.6. Similar 
results were found for negative k .  

As noted by Sulem et al. (1983), it is difficult to compute yo(t,) accurately using a 

Figure 2 (a) is a plot of In 
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t 
FIGURE 3. The logarithmic decrement yo( t )  as a function of time for the calculation with N = 512, 
as listed in table 3 :  ., yo estimated for 2 < k < 240; B, yo estimated for ti < k < 240. The straight 
line is a least-squares fit to the data points for 2 < k < 240. 
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FIGURE 4. A comparison of the magnitudes of the Fourier coefficients for the vortex-sheet 
position with the asymptotic formula (3.7) : ----, computed In 1$1 for positive k with N = 512 at 
t=0.585; . , from(3.7)withA=O.O9,Re(p)= 1.20,1m(p)=0.14,y0=0.005,~0=0.79,q5=2.Ei8; 
these coefficients were computed using the Levenberg-Marguardt nonlinear least-squares method 
to fit. (3.6) to the computed values of h, for positive wavenumbers k in the range 2 < k < 240. 

truncated Fourier series. This is because the truncation error becomes significant 
when l/ro 2 A$. Therefore, the Fourier series representation of z(( ,  t )  becomes 
inaccurate when yo is less than or comparable to the spatial mesh size. We have 
chosen t, z 0.585 for figures 2 and 3 because this is the time at which qo w 2/Nwhen 
N =  512. 

We have not made an extensive effort to compare all the terms in (3.7) with the 
curves in figure 2 .  However, as an example of the type of fit that can be achieved 
using the full expression, in figure 4 we have plotted (3.7),  with the values of A ,  p, 
to, qo and 4 computed using the Levenberg-Marguardt method to obtain a nonlinear 
least-squares fit, along with the computed values of ln(i!,I (with k positive) for 
t = 0.585. The agreement is very good for large k except for k near @l, where of course 
truncation errors are significant in the computed values for i!&. The results for 
negative k (not shown) are similar. The fit is not nearly as good if it  is assumed that 
I m  (p)  = 0, and we acknowledge Pugh (1989) for the idea of allowing p to be complex. 
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Note in particular that the nonlinear least-squares method gives to = 0.79 at 
t = 0.585, very close to Ec = 0.80 as shown in table 2 for t = 0.59. This result implies 
that indeed lim,,,c E0(t) = Ec, as presumed. 

The results of this section provide some useful guidelines for exploring the 
behaviour of the &-equations. Krasny’s (1986b) assumption about the regularity of 
the solutions of the &equations can be interpreted as an assumption that T,I,(~) is 
bounded away from zero for all t or a t  least v,(t) --f 0 only as t --f co when S2 > 0. 
Therefore, an inspection of the Fourier coefficients as a function of k for different 
times should give an indication of how qo(t)  behaves for the S equations and therefore 
if Krasny’s assumption is correct. For example, if q0( t )  decays linearly with time, 
then we know that at some finite time the vortex sheet will develop a singularity, and 
therefore Krasny’s assumption is incorrect. On the other hand, if vo( t )  is found to 
decay exponentially with time, then p o ( t )  + 0 only as t + 00 and Krasny’s assumption 
is valid. 

4. Numerical results with S2 > 0 
In  this section we summarize the results for the problem formulated in $ 2  with 

S2 > 0, and compare the limit of these results as 8’ + 0 with the results of the previous 
section. 

The calculations described in this section were performed on the Amdahl VP1100 
a t  the Manchester Computer Centre using double-precision arithmetic (approxi- 
mately 16 decimal digits). The operations necessary to evaluate (2.4) were 
vectorized so that they could be executed a t  far greater speed than if they were 
performed sequentially. 

4.1. General properties of the small-time solution 
Figure 5 ( a )  shows the evolution of the vortex sheet up to  t = 4.0, as computed by the 
vortex-blob method using 6 = 0.1, N = 625, and At = 0.01. For these values of 6 and 
t the solution shown in figure 5 would be unchanged within the plotting accuracy by 
any refinement of the mesh parameters N and At. The vortex sheet initially deforms 
into a horseshoe-like shape with the open end of the shoe pointing downstream and 
the centre of mass of the released fluid accelerates in the downstream direction. Some 
time between t = 1.0 and 2.0 the open end of the horseshoe begins to roll up into two 
spirals as the centre of mass continues to accelerate. For t > 2.0 the outer shape of 
the vortex sheet changes very little, but the number of turns in the inner spirals 
increases as time progresses and become more closely spaced. At t = 3.0 the 
acceleration of the centre of mass is reduced significantly and the vortex sheet is 
nearly a distributed vortex pair propagating downstream at a nearly constant speed 
slightly less than U,. 

Figure 5 ( b )  shows a similar calculation except with 6 = 0.05. Again, Nand At were 
small enough so that the solution is converged to within plotting accuracy. The outer 
shape of the evolving vortex sheet is only slightly different than that shown in figure 
5(a), but the details of the inner spirals are significantly different. With the smaller 
value of 8, the spirals begin to form before t = I .O and a t  later times have more turns 
than the 6 = 0.1 case. The acceleration of the centre of mass is nearly the same for 
the two cases. I n  general, the gross features of the evolution of the vortex sheet are 
fairly insensitive to the value 6 ;  only the detailed structure of the inner core of the 
spirals changes significantly as S is reduced. N must be increased as 8 is decreased in 
order to fully resolve the inner structure of the spirals. 

18 BLM 247 
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FIGURE 5 .  Numerical solutions of the &equations at t = 0,  1, 2, 3, and 4, computed with 
N = 625, At = 0.01 and E = 0: (a) S = 0.1, ( b )  6 = 0.05. 

As an example of how the solution converges as N +  co, figure 6 shows a close-up 
plot of one of the spirals at t = 1.0 using N = 625, 1250, and 2500 points with 
6 = 0.02. With N = 625 the inner turns of the spiral are overlapping, but outside the 
innermost turns the plot is identical to those with N = 1250 and 2500. All regions of 
the plots are identical with N = 1250 and 2500, showing that convergence within 
plotting accuracy has been achieved with N = 1250. 

For all the calculations we have presented, the time step was chosen such that the 
Hamiltonian function was preserved to within at least four significant digits and to 
within six significant digits for t < t,. With S = 0.02 the sheet became unstable at 
some time between 1.0 and 2.0 and it was necessary to use the spectral filter to 
prevent this. Otherwise, for the calculations presented in this section the value of 6 
was large enough to prevent spurious perturbations from destabilizing the 
calculations for these short time periods (t < 4.0). In  all subsequent calculations with 
6 < 0.02, the spectral filter was used to prevent the appearance of irregular motion 
due to round-off error. 
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FIGURE 6. An enlarged view of one of the spirals at t = 1.0, computed using the &-equations 
with S = 0.02 and E = 0: (a )  N = 625, (b )  N = 1250, and (c) N = 2500. 

6 

0.251 5 
0.1005 
0.0503 
0.020 1 
0.01005 
0.00503 

0 (ii) 1 (iii) 
(i) 

X 

0.11691 
0.06091 
0.041 62 
0.03005 
0.02619 
0.024 31 

0.0224 
0.0223 
0.0224 

115' 
477.1 
137.9 
95.69 
69.67 
63.71 
60.90 

58.1 
62.0 
58.2 

Rmin  

0.84405 
0.71892 
0.64928 
0.59306 
0.57022 
0.557 68 

0.545 
0.550 
0.544 

TABLE 4. The computed values of the centroid position X, the inverse fractional increase of the 
arclength l/S, and the minimum radius of curvature R,,, as functions of S at t = 0.5. The values 
for 6 = 0 were obtained from: (i) linear extrapolation using values for 6 = 0.005 and 0.01 ; (ii) 
extrapolation using the least-squares, quadratic polynomial approximation for all 8-values ; (iii) the 
vortex-sheet calculation by Rottman et a2. (1987), as indicated 
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FIUVRE 7 .  Features of the solutions of the S-equations as functions of S at t = 0.5. The points are 
the converged computed values and the solid curve is a quadratic polynomial fitted to the points 
using a least-squares criterion: (a)  the centroid positions X ,  (6) the inverse fractional increase in the 
arclengths l/S, and ( e )  the minimum radius of curvature R,,,. 

4.2. Convergence as S2 -+ 0 when t < t ,  
For times before the critical time t,, we were able to compute the centre-of-mass 
position X ,  the fractional increase of the arclength s', and the minimum radius of 
curvature Rmin to an accuracy of at  least four significant figures for values of the 
smoothing parameter in the range 0.005 < 6 < 0.25. The values we obtained for these 
quantities are listed in table 4 and plotted in figure 7 for t = 0.5 as a function of 8. 
The solid lines in figure 7 were obtained by using a least-squares approximation to 
fit a quadratic polynomial to the data values. The good fit of these curves with the 
data indicates that in the limit as S+O these quantities behave as an asymptotic 
power series in S; for example, 

X ( S ,  t )  = X ( 0 ,  t )  + c, s+ c2 s2+. . . , (4.1) 

where cl, c2, . . . are functions of time only. The extrapolated values corresponding to 
6 = 0 are listed in table 4. The values resulting from linear extrapolation using 
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t = O  

t = 0.25 

t = 0.5 

t = 0.75 

t = 1.0 

FIGURE 8. Numerical solutions of the S-equations at t = 0, 0.25, 0.50, 0.75 and 1.0 computed 
with S = 0.01, N = 1250, At = 0.01 ; (a )  B = 2.5 x and ( b )  E = 2.5 x 

6 = 0.005 and 0.01 are also listed along with the values from the vortex-sheet 
calculation. All these values are converged to the number of figures displayed. The 
values obtained from the linear extrapolation are in very close agreement with the 
vortex-sheet values and those obtained from the quadratic polynomial least-squares 
approximation are in less close agreement. From these results, we conclude that the 
solution of the S equations converges to the exact solution in the limit 8-20, when 
t < t , .  

4.3. Irregular motion when t > t ,  

Figure 8 shows the evolution of our vortex sheet with S = 0.01 and N = 1250 for 
times up to t = 1.0. In figure 8 ( a )  the filter parameter E was set to 2.5 x and the 
solution is seen to be stable at t = 1.0. I n  figure 8 ( b ) ,  6 was reduced to 2.5 x lo-", 
which is very close to the machine precision of 2.2 x and irregular motion is 
evident at t = 0.75 and has grown substantially by t = 1.0. With S = 0.02 the spectral 
filter with E = 2.5 x produced stable solutions up to t = 4.0 (the maximum time 
investigated). 
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( ? j j ) 3 :  (a) N = 2500, (b )  N = 5000, and (c) N = 10000. 
FIGURE 9. An enlarged vie? of one of the spirals at t = 1.0 computed with 6 = 0.01 and 

E = 

Evidence that the solution converges with S = 0.01 at t = 1.0 with E = (9); 
is presented in figure 9. This figure shows close-up plots of the spiral at t = 1.0 
computed using N = 2500,5000 and 10000. With N = 2500 and 5000 the innermost 
turns of the spiral overlap but the outer turns are well resolved and the amount of 
overlapping decreases as N increases. With N =  10000 the entire spiral is well 
resolved. (The calculation with N = 10000 required 90 minutes of CPU time.) 

In attempting to carry the calculation further in time, we discovered that irregular 
motion eventually occurs despite the use of the spectral filter. Figure 10 shows close- 
up plots of one of the spirals at t = 1.45, 1.50 and 1.55 for the case with 6 = 0.01, 
E = (p); and with N = 5000 and 10000. At t = 1.5 small but definite signs of 
irregularity appear on the outermost turn of the spiral and these irregularities 
increase in size and spread over a larger region of the sheet as t increases. Only slight 
differences are apparent between N = 5000 and 10000 at t = 1.55. 

Although we have not attempted to estimate the precise time t,, say, at  which the 
irregular motion first appears as a function of 6, our calculations indicatelthat 
t,+t, as S + O .  Figure 11 shows plots of the spirals for 6 = 0.005, E = ($V)z and 
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FIGURE 10. Enlarged views of one of the spirals with S = 0.01 and E = ($V)i at t = 1.45, 1.50 and 1.55 
showing the onset of irregular motion: (a) N = 5000; (b) N = 10000. 
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FIQURE 12. Log-linear plots of the Fourier coefficient amplitudes versus wavenumber (for 
positive wavenumbers) with N = 2048, E = 3.2 x and (a) S = 0.01 for t = 0.4, 0.45, , . . , 0.8;  
(b) 6 = 0.005, for t = 0.4, 0.45, . .., 0.7. 

with N =  5000 and 10000 at t = 0.90, 0.93 and 0.96. Irregular motion is clearly 
developing at an earlier time than with 6 = 0.01 and there is no apparent difference 
between N = 5 0 0 0  and 10000. (With S =  0.02 such irregular motion had not 
developed at t = 4.0.) 

The behaviour of the discrete Fourier transforms of the solutions could give some 
insight into the origin of the irregular motion. The computed Fourier coefficients of 
the solutions for the complex positions z = x+iy of the points on the sheet with 
6 = 0.005 and 0.01 are plotted in figure 12 as functions of the positive wavenumber 
I% for successive times. At early times the logarithm of the Fourier coefiicients’ 
amplitudes decrease rapidly as k increases until the level of machine precision is 
reached. Without the superimposed small-scale oscillations the decay would be 
almost linear. As time increases the slope of this linear curve increases and the rate 
of increase is related inversely to the magnitude of 6 so that at some time after t, the 
spectrum rapidly changes from linearly decreasing to apparently logarithmically 
decreasing (which indicates that the vortex sheet has become non-analytic) and 
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t 
FIGURE 13. The logarithmic decrement To@) computed from a linear least-squares fit to the 
logarithm of Fourier coefficients for positive wavenumbers: 0 ,  6 = 0, N = 512, 2 Q k < 240; m, 

2 < k < 1000; +, 6 = 0.05, N = 1024,2 < k < 500. The straight line is a least squares fit to vo(t) for 
S = 0, taken from figure 3. 

0.005, N =  2048, 2 < k < 1000; A, S =  0.01, N =  2048, 2 < k < 1000; X ,  S=O.O2, Nz2048,  

eventually develops a larger-scale superimposed wavy appearance for large k. This 
occurs well before t8; for example with 6 = 0.01 it is just evident at t = 0.8 whereas 
ts x 1.5 for this case. A t  t, (not shown here) the large-scale waviness appears over the 
entire range of wavenumbers. This type of spectral evolution is similar to that for 
6 = 0 as t --f t, as described in $ 3  ; in other words the irregular motion could be a result 
of a spontaneous singularity forming in the exact solution for the vortex sheet. 

To obtain a more quantitative description of the time evolution of the Fourier 
coefficients plotted in figure 12, we used the linear least-squares method described in 
$3  to estimate the value of q,,(t). These estimates, for positive wavenumbers in the 
range 2 < k < 1000, are plotted in figure 13. Also plotted in this figure for comparison 
are the linear least-squares estimates of qo(t)  for 6 = 0, as computed in $ 3  and shown 
in figure 3. It appears that yo decreases linearly with time for all three values of 6, 
but the rate of decrease lessens as S increases. This type of behaviour suggests that 
a singularity will form in the vortex sheet a t  some finite time, which appears to be 
t = 0.59, 0.65 and 0.70 for 6 = 0, 0.005 and 0.010, respectively. However, this 
conclusion is tempered by the observation that for the two non-zero values of 6 the 
last one or two data points show evidence of an abrupt change to a much slower rate 
of decrease. This apparent change in slope occurs at very small values of qo, so that 
even with a lessening of the rate of decrease qo still approaches zero more rapidly than 
is possible practically to resolve. 

The behaviour of qo as it approaches zero is easier to resolve if S is larger than 0.01. 
As examples, we have estimated q,,(t), again using linear least-squares fits, for two 
additional cases: 6 = 0.02 and 0.05. The results of these calculations are plotted in 
figure 13. For S = 0.02, qo decreases linearly until about t = 0.8 and then changes to 
a slower clearly asymptotic decrease. For S = 0.05, q0 decreases linearly until about 
t = 1.0 and then changes to an even slower rate of decrease. There is no clear 
indication that a singularity will occur for these two cases. 

The totality of these results suggests the following interpretation for the cases with 
S2 > 0. There is an initial rapid linear decrease in q,, (leading to the initial formation 
of the spirals) followed by a much slower decrease that asymptotes to zero as t-+ m 
(associated with the tightening of the spirals as time increases). For S2 not too small, 
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FIGURE 14. Features of the solutions of the &equations as functions of 6 a t  t = 0.7, 1, 2, 3 and 4. 
The points are the converged computed values and the solid curves are quadratic polynomials 
fitted to the points using a least-squares criterion: (a) the centroid position X ;  ( b )  the inverse 
fractional increase in arclength I / S ;  (c) as ( b )  for t = 2, 3, 4 only. 

this tightening occurs sufficiently slowly that it is practical in a numerical scheme to 
increase the resolution appropriately so that the spirals are adequately resolved at 
some desired time of the evolution of the vortex sheet. For S2 very close to zero the 
spirals tighten so rapidly that for all practical purposes it is impossible to resolve 
them, leading eventually to aliasing problems that presumably are manifested as the 
larger-scale irregular motion that we see for S = 0.005 and 0.01. From a practical 
point of view, these very small-62 cases behave as if a singularity forms in the sheet 
at  some finite time. 

We have performed some, sensitivity tests to see if changing E has any effect on the 
irregular motion for 6 = 0.005 and 0.01. These tests indicate that the time of onset 
of the irregular motion is affected weakly by the choice of E ,  but otherwise the motion 
is unchanged. 

Also, for 6 = 0.005 and 0.01 we experimented with a low-pass digital filter in an 
attempt to prevent the irregular motion from occurring, based on the hypothesis 
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that aliasing was causing the problem. The main effect of the filter was to eliminate 
the fine structure of the spirals, The filter did not prevent the irregular motion. This 
does not rule out aliasing as the cause of irregular motion but the cause does remain 
uncertain. 

4.4. The limiting solution as S2 + 0 when t > t, 
The converged values of X and l/S for several times greater than t ,  are plotted as 
functions of S in figure 14. We could not obtain accurate results for Rmin over much 
of the range of 6 shown in the plots when t > t ,  ; apparently the spirals become so 
tight that the value of Rmin often becomes less than we can resolve with the number 
of points that we have used here. We have plotted only the converged values of X 
and l/S’; the values of these quantities did not converge when t > t, (as we have 
shown) and for t < t, when the inner core of the spiral was not adequately resolved. 

Nevertheless, we have fitted quadratic polynomials using the least-squares 
criterion to the values that did converge as N+m and have extrapolated these 
curves to S = 0, as shown in figure 14. The values of X seem to converge as &+ 0 very 
well for all the times we have computed, as shown in figure 14(a) .  Indeed, the values 
seem almost fully converged for S d 0.25 with t 2 2.0. Similarly the quadratic- 
polynomial fits to the points for I/&” also appear to converge as 6+0 as shown in 
figures 14(b) andl4(c). Apparently in the limit as S - t  0, S’+ co as t -+ 00, indicating 
that the spirals continue to tighten indefinitely as t increases. 

It appears from these results that if moderate values of S are used for times not 
greatly larger than t , ,  then solutions that converge as N +  00 can be obtained and 
these solutions appear to have a limit as S + O .  

5. Concluding remarks 
We have presented numerical solutions of the &equations approximating the two- 

dimensional inviscid motion of an initially circular vortex sheet released in a cross- 
flow. When the smoothing parameter S2 = 0 (for which the equations are exact), a 
vortex-sheet method was used to integrate the equations numerically, and when 
S2 > 0 the well-known vortex-blob method was used. For values of S2 equal to or close 
to zero, we used a spectral filter, as recommended by Krasny (1986a), to eliminate 
spurious instabilities due to round-off error. 

A detailed study was made of the case with S2 = 0. It appears that two singularities 
form in the vortex sheet a t  a critical time t ,  E 0.59. The appearance of these 
singularities is associated with two branch points in the complex plane reaching the 
real axis a t  the same time. The presence of two branch points a t  equal distances from 
the real axis results in an oscillatory Fourier spectrum of the vortex sheet. Even 
though the vortex sheet appears only slightly deformed at t,, analysis indicates that 
the radius of curvature of the sheet approaches zero as t -+ t ,  at two points. After t ,  
the numerical solution did not converge with increasing N .  

Our results for S2 > 0 indicate that the vortex sheet deforms into two doubly 
branched spirals. For moderate values of S2,  and t not too large, these solutions 
appear to converge with increasing N .  However, for very small values of S2 the 
solutions did not converge. We conjectured that the scales associated with these 
spirals became so small so rapidly that for all practical purposes a singularity had 
formed in the vortex sheet. Nevertheless, we found that the converged solutions 
appeared to  have a limit as 6-t 0. 

It remains unclear what the relation is between the limiting solution as 8+ 0 and 
the solution with 6 = 0 when t > t,. 
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